注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术工业技术一般工业技术储能用介电复合材料研究进展(英文版)

储能用介电复合材料研究进展(英文版)

储能用介电复合材料研究进展(英文版)

定 价:¥68.00

作 者: 同阳 著
出版社: 知识产权出版社
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787513067096 出版时间: 2019-12-01 包装: 平装
开本: 16开 页数: 200 字数:  

内容简介

  本书系统地介绍了介电复合材料的制备、表征及性能,并在此基础上总结复合材料的介电理论,揭示复合材料结构影响性能的机理。本书可作为高等院校及科研院所材料等专业科研人员对介电复合材料开展研究工作的参考,对从事介电材料生产与应用单位的工程师和管理工作者具有指导作用。

作者简介

  同阳,男,1988年6月生。博士研究生学历,*高学历毕业于美国奥本大学。2017年12月博士毕业后在奥本大学任博士后至2018年6月,博士后任职结束后回国,任职于太原科技大学。主要研究方向为介电材料的制备与表征,熟悉聚合物基材料、陶瓷基材料的制备及性能表征方法,尤其擅长复合材料的研究,通晓材料介电性能的主要理论,善于汇总数据、理论分析,精通于使用各种表征仪器。

图书目录

C o n t e n t s
Chapter 1 Introduction and Research Objectives ··········· 1
1.1 Theory of Dielectric Materials ··································· 2
1.1.1 Permittivity ··················································· 2
1.1.2 Dielectric Loss ··············································· 4
1.1.3 Relaxation····················································· 6
1.2 Classification of Dielectric Materials ··························· 8
1.2.1 Non Polar Materials·········································· 9
1.2.2 Polar Materials ··············································· 9
1.3 Application of Dielectrics ······································· 12
1.3.1 High/Low Permittivity······································ 12
1.3.2 Energy Storage ·············································· 13
1.3.3 Wearable Electronics ······································· 17
1.4 Dielectric Composites ··········································· 18
1.4.1 General Concepts of Composites ·························· 18
1.4.2 Flexible Polymer-Based Dielectric Composites ········· 20
1.4.3 Ceramic-Glass Dielectric Composites ···················· 29
1.4.4 Interface Effect in Composites ···························· 30
1.5 Objectives of Research ·········································· 32
References ······························································· 33
Chapter 2 Preparation and Characterization Methods ····· 47
2.1 Raw Materials ···················································· 48
2.1.1 MXene 2-D Material Ti3C2Tx ····························· 48
2.1.2 Calcium Copper Titanate CaCu3Ti4O12·················· 50
2.1.3 Barium Titanate BaTiO3···································· 51
2.1.4 Barium Strontium Titanate Ba0.5Sr0.5TiO3 ············· 54
2.2 Conductor-Polymer Composite Fabrication ··················· 56
2.2.1 Preparation ··················································· 56
2.2.2 Optimization ················································· 56
2.3 Ceramic-Polymer Composite Fabrication ····················· 60
2.3.1 Preparation ··················································· 60
2.3.2 Optimization ················································· 61
2.4 Ceramic-Glass Composite Fabrication ························· 63
2.4.1 Preparation ··················································· 63
2.4.2 Optimization ················································· 66
2.5 Characterization Methods ······································· 69
2.5.1 Crystalline Structure Determination ······················ 69
2.5.2 Microstructure Analysis ···································· 70
2.5.3 Dielectric Properties Analysis ····························· 71
2.5.4 Energy Density Calculation ································ 72
References ······························································· 73
Chapter 3 Conductor-Polymer Composite Using 2-D
Conductive Fillers ·································· 79
3.1 Introduction ······················································· 80
3.2 Samples···························································· 81
3.3 Structure and Morphology Characterization ·················· 82
3.3.1 X-ray Diffraction············································ 82
3.3.2 Differential Scanning Calorimetry ························ 83
3.3.3 Scanning Electron Microscopy ···························· 86
3.3.4 Fourier Transform Infrared Spectroscopy ················ 87
3.4 Dielectric Properties ············································· 90
3.4.1 Frequency Dependency of Dielectric Properties at
Room Temperature ·········································· 90
3.4.2 Temperature Dependency of Dielectric Properties ······ 92
3.4.3 Dielectric Properties at High Electric Fields ············ 94
3.5 Discussion ························································ 97
3.5.1 Percolation Threshold ······································ 97
3.5.2 Effect of Silicon Coupling Agent ························105
3.5.3 Crystallinity Increase Due to Filler Addition ···········107
3.6 Summary ························································· 111
References ······························································ 112
Chapter 4 Ceramic-Polymer Composite with
Coupling Agent····································· 115
4.1 Introduction ······················································ 116
4.2 Samples··························································· 117
4.3 Structure and Morphology Characterization ················· 118
4.4 Dielectric Properties ············································ 121
4.4.1 Dielectric Properties with Different
Filler Contents ··············································121
4.4.2 Temperature Dependency of Dielectric
Properties ····················································125
4.5 Discussion ······················································· 127
4.5.1 Coverage of Silicon Coupling Agent ·····················127
4.5.2 Effect of Silicon Coupling Agent on
Dielectric Properties ·······································130
4.6 Summary ························································· 133
References ··························································· 134
Chapter 5 Ceramic-Glass Composite ························137
5.1 Introduction ······················································ 138
5.2 Sample and Systems ············································ 139
5.3 BaTiO3-SiO2 Composites Prepared by
Conventional Sintering ·········································· 141
5.3.1 Structure and Morphology Characterization ············141
5.3.2 Dielectric Properties ·······································149
5.3.3 Discussion ··················································156
5.4 Ba0.5Sr0.5TiO3-SiO2 Composites Prepared
by Conventional Sintering ······································ 164
5.4.1 Structure of Composites ···································164
5.4.2 Dielectric Properties ·······································167
5.4.3 Discussion ··················································172
5.5 Summary ························································· 175
References ······························································ 178
Chapter 6 Conclusions and Perspectives ····················181
6.1 Conclusions ······················································ 182
6.2 Perspectives ······················································ 185

本目录推荐