注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术工业技术一般工业技术用于拍瓦级脉冲驱动源的整体径向传输线的研究

用于拍瓦级脉冲驱动源的整体径向传输线的研究

用于拍瓦级脉冲驱动源的整体径向传输线的研究

定 价:¥59.00

作 者: 毛重阳
出版社: 清华大学出版社
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787302530688 出版时间: 2019-08-01 包装: 平装-胶订
开本: 16开 页数: 105 字数:  

内容简介

  整体径向传输线是未来拍瓦级脉冲驱动源中可能采用的一种传输线,其用途是实现多路脉冲并联汇流和进行阻抗变换。本书通过电路仿真和解析分析研究了整体径向传输线的阻抗变化规律对其传输特性的影响,通过三维电磁场仿真研究了整体径向传输线的三维几何外形对其传输特性的影响,并*终通过实验检验了三维电磁场建模和仿真的可靠性。全书推导过程严密、细致,仿真建模可靠、符合实际,实验重复性好,力求为整体径向传输线在脉冲功率技术领域的应用打下基础。

作者简介

暂缺《用于拍瓦级脉冲驱动源的整体径向传输线的研究》作者简介

图书目录

第1章引言
1.1传输线简介
1.2传输线按结构分类
1.2.1同轴传输线
1.2.2平行板传输线
1.3传输线按沿线特性阻抗分类
1.4非均匀传输线的应用
1.5高功率脉冲技术领域中的传输线
1.6整体径向传输线的研究方法和研究现状
1.6.1解析分析研究
1.6.2电路仿真研究
1.6.3电磁场仿真研究
1.6.4实验研究
1.7主要工作
第2章非均匀传输线传输特性的电路仿真研究
2.1模型建立
2.2分析方法
2.3仿真结果
2.4对仿真结果的进一步分析
2.5本章小结
第3章非均匀传输线传输特性的解析分析研究
3.1解析求解
3.1.1模型建立
3.1.2输出电压的解析求解
3.1.3解析求解与电路仿真的结果对比
3.2理论分析
3.2.1输出电压的影响因素
3.2.2首达波特性
3.2.3脉冲压缩特性
3.2.4高通特性
3.2.5峰值特性
3.2.6平顶下降特性
3.3图形用户界面
3.4本章小结
第4章非均匀传输线传输特性的三维电磁场仿真研究
4.1同轴非均匀传输线的三维电磁场仿真研究
4.1.1模型建立
4.1.2结果与讨论
4.2整体径向非均匀传输线的三维电磁场仿真研究
4.2.1模型建立
4.2.2结果与讨论
4.3本章小结
第5章小型整体径向传输线的实验研究
5.1小型整体径向传输线的实验装置设计
5.1.1单路高电压纳秒矩形波脉冲发生器
5.1.2电阻分压器
5.1.321路分路器
5.1.4整体径向传输线及其负载
5.2实验结果与讨论
5.2.1正常情形
5.2.2不同数目输入端口情形
5.2.3故障情形
5.3本章小结第6章结论参考文献在学期间发表的学术论文致谢Contents用于拍瓦级脉冲驱动源的整体径向传输线的研究
Contents
Chapter 1Introduction
1.1Background
1.2Review of Evaluation Methods of Intelligent Driving 
Systems
1.2.1Brief Introduction of Relevant Evaluation 
Methods
1.2.2Classification Analysis and Comparison
1.3Research Status of Intelligent Driving System Identification
1.3.1Key Parameters Estimation
1.3.2Control Logic Identification
1.4Research Status of Evaluation Index
1.4.1Evaluation Index about Intelligence
1.4.2Evaluation Index about Safety Benefit
1.5Research Topics in This Book
Chapter 2Research Framework of Safety Benefit Evaluation 
Methodology
2.1Design of Safety Benefit Evaluation Process
2.1.1Basic Data Source
2.1.2Monte Carlo Simulation
2.1.3Safety Benefit Calculation
2.2Involved Key Techniques
Chapter 3Intelligent Driving System Identification Method Based 
on Vehicle Operation Data
3.1The Goal of Intelligent Driving System Identification
3.2Key Parameters Estimation Based on Frequency Response 
Characteristics
3.2.1Tire Stiffness Estimation Based on Frequency 
Response of the Steering System
3.2.2Time Delay Coefficient Estimation Based on 
Frequency Response of the Driving System
3.2.3Vehicle Mass Estimation Based on Vehicle 
Longitudinal Frequency Response Characteristics
3.2.4Summary of This Section
3.3Control Logic Identification Based on Machine Learning
3.3.1Intrinsic Nature of Control Logic Identification
3.3.2Control Logic Identification Based on Neural 
Network
3.4Summary of This Chapter
Chapter 4Occupant Injury Risk Estimation Based on Accident Data
4.1Research Scheme of Occupant Injury Risk Estimation
4.2Feasibility Verification of Vehicle Deformation Depth as 
Occupant Injury Evaluation Index
4.2.1Verification Based on GIDAS Data
4.2.2Verification Based on NASSCDS Data
4.3Occupant Injury Risk Estimation Based on Vehicle 
Deformation Depth
4.3.1Injury Risk Model Based on Vehicle Deformation 
Depth
4.3.2Vehicle Deformation Depth Estimation Based 
on Crash Energy
4.3.3Occupant Injury Risk Calculation Using Crash 
Simulation Software
4.4Summary of This Chapter
Chapter 5Safety Benefit Evaluation Methodology of Intelligent 
Driving Systems Based on Multisource Data Mining
5.1Overall Requirements for Safety Benefit Evaluation Methods
5.2Framework of Safety Benefit Evaluation Method Based 
on MultiSource Data Mining
5.3Key Techniques of Building Traffic Model
5.3.1Random Leading Vehicle Model
5.3.2Random Following Vehicle Model
5.3.3Subject Vehicle Model
5.4Key Techniques of Simulation Process
5.4.1CarSimSimulink Simulation Module
5.4.2PC CrashRateEFFECT Simulation Module
5.5Key Techniques of Injury Risk Estimation Process
5.5.1Calculation Method of Average Occupant Risk Per 
Mileage
5.5.2Deformation Length Estimation Based on Vehicle 
Collision Position Coordinates
5.6Summary of This Chapter
Chapter 6Verification and Application of the Proposed Methods
6.1Verification of Intelligent Driving System Identification 
Methods
6.1.1Verification of Key Parameters Estimation Methods
6.1.2Verification of the Control Logic Identification 
Method
6.2Verification of the Occupant Injury Risk Estimation Method
6.2.1Regression Relation Between Injury Risk and ΔV
6.2.2Comparison of the Occupant Injury Risk 
Estimation Methods with Deformation Depth 
and ΔV
6.3Application of the Proposed Safety Benefit Evaluation 
Methodology
6.3.1Safety Benefit Evaluation Using Accident 
Reconstruction Database
6.3.2Safety Benefit Evaluation Based on Random 
Traffic Scenarios
6.4Summary of This Chapter
Chapter 7Conclusions

本目录推荐