注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术工业技术工业技术理论/总述纳米技术原理:微系统中基于分子的凝聚态研究(英文影印版)

纳米技术原理:微系统中基于分子的凝聚态研究(英文影印版)

纳米技术原理:微系统中基于分子的凝聚态研究(英文影印版)

定 价:¥40.00

作 者: (美)曼索里
出版社: 复旦大学出版社
丛编项:
标 签: 精细化工

ISBN: 9787309052060 出版时间: 2006-11-01 包装: 平装
开本: 32 页数: 341 字数:  

内容简介

  纳米技术最先由诺贝尔物理学奖获得者、著名的物理学家理查德·费曼在1959年12月29日的一次报告中提出来的。20世纪80年代,扫描探针显微镜发明之后,纳米技术开始快速发展,现在它已成为物品设计和制作中最活跃的前沿应用领域。《纳米技术原理》就是作者根据自己37年的研究工作,在给伊利诺依(Illinois)大学的工程、生物和物理类研究生和读过量子力学、统计力学的高年级大学生讲课的讲稿基础上撰写而成的。《纳米技术原理》强调在凝聚态物质的分子研究基础上,重点介绍微系统的有趣课题。《纳米技术原理》共分11章,分别讲述原子、分子纳米技术的进展;纳米系统中分子间的作用力和势函数;纳米系统的热力学和统计力学;纳米系统的Monto Carlo模拟法;纳米系统的动力学模拟法;纳米系统的计算机模拟和最优化;纳米系统的相变;原子分子的定位安装;分子自组装;动力学组合化学;分子组装的鸟笼结构等。《纳米技术原理》提供了丰富的进一步研究的参考文献。《纳米技术原理》除了可用作相关专业的研究生教材和本科生选修课教材之外,还可作为有关专家了解纳米系统学科概貌的参考读物。《纳米技术原理》的细致解释,一定会引起读者的广泛关注。考虑到纳米技术是一门跨学科的交叉学科,《纳米技术原理》还附上术语解释,包括了缩略语、化学方程式、概念定义、方程和理论等方面,这将为不同学科的读者提供阅读的方便。

作者简介

  曼索里,G.Ali Mansoori,美国Illinois大学生物工程和化学工程系教授、博士。作者致力于将统计力学和热力学应用于化学工程和生物工程之中,研究范围涉及重油利用、沥青质特征、天然气净化、超临界流体的提取、生物技术和环境污染等。作者已经取得了以下成果:确立了可用于工程设计计算的新的分子溶液理论、多组份混合物的相平衡理论,并将上述两理论用于聚合物溶体、石油贮存流体、煤液化流体以及生物学流体之中;得到由极化分子或亲水性分子组成的反对称混合物的统计力学混合规则;提出了超临界流体萃取和反缩聚的可能技术手段,并将这些技术手段用于天然气的生产和加工过程之中;得出生物学分离的相平衡理论以及在从生物学流体富集生物大分子(蛋白质)过程中的应用;从石油原油中提取沥青质的沉淀和分离技术及其在石油生产和加工过程中的应用等。作者采用了色谱法、界面张力计、沸点升高测定法以及微组分集结、胶体化、微胶粒、聚合等实验方法和统计力学理论,建立了上述的技术设施。《纳米技术原理》一书是作者近年来对微系统进行分子研究和在凝聚态物理教学工作的基础上编写而成的。

图书目录

Preface

Chapter1—AdvancesinAtomicandMolecularNanotechnology
Introduction
TheImportanceofNanoscale
AtomicandMolecularBasisofNanotechnology
SomeRecentKeyInventionsandDiscoveries
ScanningTunnelingMicroscope
AtomicForceMicroscope
Diamondoids
Buckyballs
CarbonNanotubes
Cyclodextrins,LiposomeandMonoclonalAntibody
OngoingResearchandDevelopmentActivities
FutureProspectsinNanoscienceandNanotechnology
ConclusionsandDiscussion
SomeImportantRelatedINTERNETSites
Bibliography

Chapter2—NanosystemsIntermolecularForcesandPotentials
Introduction
CovalentandNoncovalentInteractions
InteratomicandIntermolecularPotentialEnergiesandForces
ExperimentalandTheoreticalDevelopmentofInterparticlePotentials
Step(1):AFMMeasurementandEmpiricalModeling
Step(2):TheoreticalModeling
LinearizedAugmentedPlaneWave(LAPW)
Full-PotentialLinearizedAugmentedPlaneWave(FLAPW)
Step(3):DevelopmentofNanoparticlePotentials
PhenomenologicalInteratomicandIntermolecularPotentials
1.InteratomicPotentialsforMetallicSystems
1.1.TheMany-BodyEmbedded-AtomModel(EAM)Potentials
1.2.TheMany-BodyFinnisandSinclair(FS)Potentials
1.3.TheMany-BodySuttonandChen(SC)Long-RangePotentials
1.4.TheMany-BodyMurrell-Mottram(MM)Potential
1.5.TheMany-BodyRafii-TabarandSutton(RTS)Long-RangeAlloyPotentials
1.6.Angular-DependentPotentials
2.InteratomicPotentialsforCovalently-BondingSystems
2.1.TheTersoffMany-BodyC-C,Si-SiandC-SiPotentials
2.2.TheBrenner-Tersoff-TypeFirstGenerationHydrocarbonPotentials
2.3.TheBrenner-Tersoff-TypeSecondGenerationHydrocarbonPotentials
3.InteratomicPotentialforC-CNon-CovalentSystems
3.1.TheLennard-JonesandKiharaPotentials
3.2.Theexp-6Potential
3.3.TheRuoff-HickmanPotential
4.InteratomicPotentialforMetal-CarbonSystem
5.Atomic-SiteStressField
ConclusionsandDiscussion
Bibliography

Chapter3—ThermodynamicsandStatisticalMechanicsofSmallSystems
Introduction
ThermodynamicSystemsinNanoscale
Energy,HeatandWorkinNanosystems
LawsofThermodynamics
TheZerothLaw
TheFirstLaw
TheSecondLaw
TheThirdLaw
StatisticalMechanicsofSmallSystems
ThermodynamicsandStatisticalMechanicsofNonextensiveSystems
Euler'sTheoremofHomogenousFunctions
BoltzmannandBoltzmann-GibbsFormulaeofEntropy
TsallisFormulaofEntropy
MicrocanonicalEnsembleforNonextensiveSystems
CanonicalEnsembleforNonextensiveSystems
ConclusionsandDiscussion
Bibliography

Chapter4—MonteCarloSimulationMethodsforNanosystems
Introduction
GeneratingRandomNumbers
GeneratingUniformlyDistributedRandomNumbersin[0,1)
GeneratingRandomNumbersin[a,b)AccordingtoaGiven
DistributionFunctionP(x)
ImportanceSampling
MonteCarloIntegrationMethod
ApplicationstoNanosystemsComposedofaFewParticles
EquilibriumStatisticalMechanicsandMonteCarloMethod
TheMarkovProcess
ChoiceoftheTransitionFunction
Example
AcceptanceRatiosandChoiceoftheMoves
OtherTrickstoImprovetheSimulationSpeed
ApplicationofMonteCarlotoNonequilibriumProblems
TheLangevinEquation
InteractingSystems
ConclusionsandDiscussion
Bibliography

Chapter5—MolecularDynamicsSimulationMethodsforNanosystems
Introduction
PrinciplesofMDSimulationofNanosystems
IntegrationofNewtonEquationofMotion
1.TheVeletMethod
2.TheLeap-FrogMethod
3.TheVelocity-VerletMethod
4.TheGearPredictor-CorrectorMethod
ChoiceoftheTimeIncrementAt
MDSimulationofSystemsinContactwithaHeatBath:Thermostats
1.VelocityScalingThermostat
2.TheNose-HooverExtended-SystemThermostat
3.TheLangevinThermostat
CalculationsResultingfromMDSimulations
ConclusionsandDiscussion
Bibliography

Chapter6—Computer-BasedSimulationsandOptimizationsforNanosystems
Introduction
A.ClassificationofSimulationMethodsBasedonAccuracyandComputationalTime
MethodswiththeHighestDegreeofAccuracy(VeryCPU-Intensive)
MethodswiththeSecondHighestDegreeofAccuracy
Semi-EmpiricalMethods
StochasticMethods
B.ClassificationofOptimizationsinMolecularSimulations
LocalOptimizationMethods
1.SteepestDescentMethod(SDM)
2.DampedNewtonianDynamicsMethod
3.ConjugateGradientsMethod(CGM)
4.Quasi-NewtonMethods
GlobalOptimizationMethods
1.SimulatedAnnealingMethod
2.GeneticAlgorithm
ConclusionsandDiscussion
Bibliography

Chapter7—PhaseTransitionsinNanosystems
Introduction
TheGibbsPhaseRule
PhaseTransitions
AComparisonofPhaseTransitionsBetweenSmallandLargeSystems
Fragmentation
ExperimentalObservationsofPhaseTransitionsinSmallSystems
1.EvaporationofWaterinaSealedNanotube
2.MicellizationandCoacervation
3.AnExampleofCrystallization
ConclusionsandDiscussion
Bibliography

Chapter8—PositionalAssemblyofAtomsandMolecules
Introduction
Positional(orRobotic)Assembly
ScanningProbeMicroscopy
1.Topografiner
2.QuantumMechanicalTunnelingEffect
3.PiezoelectricPhenomena
4.ScanningTunnelingMicroscope(STM)
5.ElectronicsFeedbackLoop
6.AtomicForceMicroscope(AFM)
ApplicationsofSTMforPositionalAssemblyofMolecules
ConclusionsandDiscussion
Bibliography

Chapter9—MolecularSelf-Assembly
Introduction
TheFiveFactorsResponsibleforSelf-Assembly
(1).TheRoleofMolecularBuildingBlocks(MBBs)inSelf-Assembly
(2).TheRoleofIntermolecularInteractionsinSelf-Assembly
(3).Reversibility
(4).MolecularMobility
(5).ProcessMedium
SomeExamplesofControlledSelf-Assemblies
(A).Self-AssemblyUsingSolidSurfaces-Immobilization
Techniques
(A-1).AffinityCouplingviaAntibodies
(A-2).AffinityCouplingbyBiotin-Streptavidin
(Bio-STV)SystemandItsModification
(A-3).ImmobilizedMetalIonComplexation(IMIC)
(A-4).Self-AssembledMonolayer(SAM)
(A-4-1).PhysicalAdsorption
(A-4-2).InclusioninPolyelectrolytesor
ConductingPolymers
(A-4-3).InclusioninSAM
(A-4-4).Non-OrientedAttachmenttoSAM
(A-4-5).OrientedAttachmenttoSAM
(A-4-6).DirectSite-SpecificAttachmenttoGold
(A-5).StrainDirectedSelf-Assembly
(A-6).DNADirectedSelf-Assembly
(A-7).Self-AssemblyonSiliconSurfaces
(B).Self-AssemblyinFluidMedia
ConclusionsandDiscussion
Bibliography

Chapter10—DynamicCombinatorialChemistry
Introduction
DynamicCombinatorialLibrary(DCL)
ChallengesandLimitationsinDesigningaDCL
(i)TheNatureofDCLComponentsandTemplates
(ii)TheTypesofIntermolecularInteractionsinDCL
(iii)ThermodynamicConditions
(iv)MethodsofaDCLAnalysis
MolecularRecognition
SomeExamplesandApplicationsofDCL
Host-GuestChemistry
ConclusionsandDiscussion
Bibliography

Chapter11—MolecularBuildingBlocks—Diamondoids
Introduction
MolecularBuildingBlocks
Diamondoids
SomePhysicalandChemicalPropertiesofDiamondoid
Molecules
SynthesisofDiamondoids
GeneralApplicationsofDiamondoids
ApplicationofDiamondoidsasMBBs
DiamondoidsforDrugDeliveryandDrugTargeting
DNADirectedAssemblyandDNA-Adamantane-Protein
Nanostructures
DiamondoidsforHost-GuestChemistry
ConclusionsandDiscussion
Bibliography

Glossary

Index

本目录推荐